

Student Name	
Teacher's Name:	

Extension 2 Mathematics

TRIAL HSC

August 2021

General Instructions

- Reading time 10 minutes
- Working time 180 minutes
- · Write using black pen
- NESA approved calculators may be used
- · A reference sheet is provided
- In questions 11-16, show relevant mathematical reasoning and/or calculations

Total marks:

Section I - 10 marks

100

- Attempt Questions 1-10
- · Allow about 15 minutes for this section

Section II - 90 marks

- Attempt questions 11-16
- Allow about 2 hours and 45 minutes for this section

Section I

10 Marks

Attempt Questions 1-10

Allow approximately 15 minutes for this section.

Use the Multiple Choice answer sheet for questions 1-10.

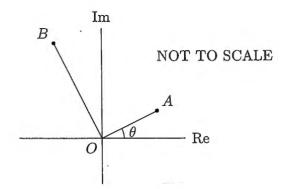
1. Which vector is perpendicular to

$$\begin{pmatrix} 6 \\ -4 \\ 8 \end{pmatrix}$$
?

- $\begin{pmatrix} 12 \\ -8 \\ 16 \end{pmatrix}$ B) $\begin{pmatrix} -6 \\ 4 \\ 2 \end{pmatrix}$

- C) $\begin{pmatrix} 6 \\ 12 \\ 2 \end{pmatrix}$ D) $\begin{pmatrix} 4 \\ 10 \\ 2 \end{pmatrix}$
- 2. A particle is describing SHM in a straight line with an amplitude of 2 metres. Its speed is 3m/s when the particle is 1 metre from the centre of motion.

What is the period of the motion?


- A)
- B) $\frac{2\pi\sqrt{3}}{3}$ C) $\pi\sqrt{3}$

3. Consider the following statement for $n\epsilon\mathbb{Z}$.

If $n^2 + 4n$ is odd, then n is odd. Which of the following statements is the contrapositive of this statement for $n \in \mathbb{Z}$?

- A) If n is even, then $n^2 + 4n$ is even
- B) If $n^2 + 4n$ is even then n is even
- C) If n is odd then $n^2 + 4n$ is odd
- D) If $n^2 + 4n$ is odd then n is even

The points A and B in the diagram represent the complex numbers z_1 and z_2 respectively, where $|z_1| = 1$ and arg $(z_1)=\theta$ and $z_2=\sqrt{3}iz_1$

Which of the following represents $z_2 - z_1$?

- A) $2e^{i(\frac{2\pi}{3}+\theta)}$ B) $3e^{i(\frac{2\pi}{3}+\theta)}$ C) $2e^{i(\frac{2\pi}{3}-\theta)}$ D) $3e^{i(\frac{2\pi}{3}-\theta)}$
- Which of the following is an expression for $\int_0^{\frac{\pi}{2}} \frac{1}{1+\cos x} dx$ after using the substitution $t=\tan\frac{x}{2}$?

 A) $\int_0^1 \frac{1}{1+2t} dt$ B) $\int_0^1 1+t^2 dt$ C) $\int_0^1 dt$ D) $\int_0^1 \frac{2}{(1+t)^2} dt$ 5.

- 6. Which of the following is false?

- B) $\int_{-4}^{4} \frac{x^2}{x^2 + 4} dx = 2 \int_{0}^{4} \frac{x^2}{x^2 + 4} dx$ D) $\int_{0}^{1} x^4 dx < \int_{0}^{1} x^5 dx$
- $\int_{-3}^{3} x^3 e^{-x^2} dx = 0$ $\int_{0}^{\pi} \sin^4 \theta d\theta > \int_{0}^{\pi} \sin 4\theta d\theta$
- 7. The points A, B and C are collinear where

$$\overrightarrow{OA} = \underbrace{i}_{\sim} + j$$
, $\overrightarrow{OB} = 2\underbrace{i}_{\sim} - j + \underbrace{k}_{\sim}$, $\overrightarrow{OC} = 3\underbrace{i}_{\sim} + aj + b\underbrace{k}_{\sim}$.

What are the values of a and b?

A)
$$a = 3$$
, $b = 2$

B)
$$a = -3, b = 2$$

C)
$$a = 3$$
, $b = -2$

D)
$$a = -3, b = -2$$

- 8. If z is any complex number satisfying |z-2|=1, then which of the following is correct?
 - A) arg(z-2) = 2arg(z-1)
 - B) $2argz = \frac{2}{3}arg(z^2 + 2z)$
 - C) argz = 2arg(z-2)
 - D) arg(z + 2) = arg(z 2)
- 9. Let $u = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$ and $v = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$.

The angle between the vectors \boldsymbol{u} and \boldsymbol{v} is

- A) 30°
- B) 22.5° C)
 - c) 0°
- D) 45°
- 10. Given that $w^7 = 1$ and w is a complex number, what is the value of

$$1 + w + w^2 + w^3 + w^4 + w^5 + w^6 + w^7$$
?

- A) 1
- B) ν
- C) -w
- D)

Section II 90 Marks

Attempt Questions 11-16.

Allow approximately 2 hours and 45 minutes for this section.

Your responses should include relevant mathematical reasoning and/or calculations.

Begin each question on a NEW page.

Question 11 (15 marks) Marks

a) Let $z = 1 + \sqrt{3}i$. Find the complex numbers for

(i)
$$z\bar{z}$$

(ii)
$$z^2$$

b) Express
$$-2 + 2\sqrt{3}i$$
 in the form $re^{i\theta}$

c) Find

(i)
$$\int \frac{dx}{x(lnx)}$$

(ii)
$$\int \frac{1}{x^2 + 6x + 13} dx$$
 2

d) (i) Use Euler's formula
$$e^{i\theta}=cos\theta+isin\theta$$
 to find a similar simplified result for $e^{-i\theta}$ 1

(ii) Hence show
$$sin\theta = \frac{1}{2i}(e^{i\theta} - e^{-i\theta})$$

(iii) Use the result from part (ii) to show that

$$\sin^3\theta = \frac{3}{4}\sin\theta - \frac{1}{4}\sin3\theta$$

- a) The velocity v m/s of a particle moving in simple harmonic motion along the x axis is given by $v^2 = 8 2x x^2.$
 - (i) Between which two points is the particle oscillating?

2

(ii) Find the acceleration of the particle in terms of x

1

(iii) Find the period of the motion

- 1
- (iv) What is the time taken by the particle to travel the first 60m of its motion (leave in exact form)
- 1

b) Given that a, b and c are positive real numbers, prove that

$$(a+b+c)^2 \ge 3(ab+ac+bc)$$

- 3
- c) If a = 3i + 2j + 2k and b = i j k, find the unit vector(s) perpendicular to both a and b
- 2
- d) The points *P*, *Q* and *R* have position vectors i + 2j k, i + 2j and 2i 3j 2k respectively.
 - (i) Find the vectors \overrightarrow{QP} and \overrightarrow{QR}

1

(ii) Find the magnitude of $\angle PQR$ correct to the nearest degree

2

e) (i) Find the vector equation of line vector r given it passes through (1,3,-2) and (2,-1,2)

1

(ii) Determine if r passes through (4, -9, 10)

1

Find $\int \frac{dx}{x\sqrt{x^2-4}}$ using the substitution $u=\sqrt{x^2-4}$ a)

2

Evaluate $\int x^2 \sin x dx$ b)

2

Given that for k>0, $\frac{1}{(k+1)^2}-\frac{1}{k}+\frac{1}{k+1}<0$ use Mathematical Induction to prove that for c) all integers $n \geq 2$,

3

 $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} \dots \dots + \frac{1}{n^2} < 2 - \frac{1}{n}$

3

If P = i + j + k and R = 9i + 3j + 8k find the point Q on \overrightarrow{PR} such that d) PO: OR = 2:3

- e) The rise and fall of tides can be approximated to simple harmonic motion. At 11am the depth of water in a tidal lagoon is lowest at 1m. The following high tide is at 5:21pm with a depth of 5m.
 - (i) Find the period of this motion in minutes

1

Express the motion using a cosine function (ii)

2

Calculate between which times a yacht could safely cross the lagoon if a (iii) minimum depth of 2m is required

2

Prove the following statement using a proof by contradiction. a)

3

- "For each irrational number s, the number 2s + 1 is also irrational"
- (i) If $I_n = \int_0^{\frac{\pi}{4}} sec^n \theta d\theta$ show that b)

3

 $I_{n} = \frac{1}{n-1} \left[(n-2)I_{n-2} + (\sqrt{2})^{n-2} \right]$

 $n \ge 2$

Evaluate $\int_{0}^{\frac{\pi}{4}} \sec^4 \theta d\theta$ (ii)

Find real numbers a, b and c such that c) (i)

2

2

 $\frac{1}{x^2(x-1)} = \frac{a}{x} + \frac{b}{x^2} + \frac{c}{x-1}$

2

Hence find $\int \frac{1}{x^2(x-1)} dx$ in simplest form. (ii)

d) Find a point of intersection of the line with parametric equation 3

 $r=\underbrace{i}_{\sim}+3j-4\underbrace{k}_{\sim}+t(\underbrace{i}_{\sim}+2j+2\underbrace{k}_{\sim})$ and the sphere with equation $(x-1)^2 + (y-3)^2 + (z+4)^2 = 81$

- a) The point P(x, y) representing the complex number z moves in the Argand diagram so that |z-6|=|z+2i|.
 - (i) Show that the path *P* traces out, has equation 3x + y 8 = 0

2

(ii) Find the minimum value of |z| as P moves on this path

- 2
- b) The polynomial $P(x)=x^4-4x^3+11x^2-14x+10$ has zeros a+bi and a+2bi 3 where a and $b\in\mathbb{R}$ and $b\neq 0$.
 - By evaluating a and b, find all the zeros of P(x).
- c) A particle moves along the x axis, starting at x = 0.1 at time t = 0.

The velocity of the particle is described by

$$v = \sqrt{2x} e^{-x^2} x \ge 0.1$$

where x is the displacement of the particle from the origin.

- (i) Show that the acceleration of the particle is given by
 - $a = e^{-2x^2}(1-4x^2)$

2

2

2

(ii) Hence find the fastest speed attained by the particle.

- (iii) Show that T, the time taken to travel from x = 1 to x = 2 can be expressed as

$$T = \int_1^2 \frac{1}{\sqrt{2x}} e^{x^2} dx$$

(iv) Use the trapezoidal rule with three function values to give an approximate value 2 of *T* correct to the nearest whole number.

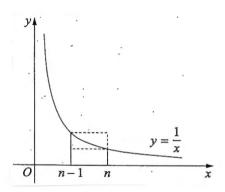
Question 16

(15 marks)

Begin a NEW page

Marks

2


- a) Given $\overrightarrow{AP} = \begin{bmatrix} -1 \\ 6 \\ -1 \end{bmatrix}$ and $\overrightarrow{AB} = \begin{bmatrix} -2 \\ 5 \\ -7 \end{bmatrix}$
 - (i) Find $proj_b p$ where $\overrightarrow{AP} = p$ and $\overrightarrow{AB} = b$
 - (ii) Find the perpendicular distance d from P to the line AB.
- b) (i) Using a suitable substitution, show that

$$\int_0^a f(x)dx = \int_0^a f(a-x)dx$$

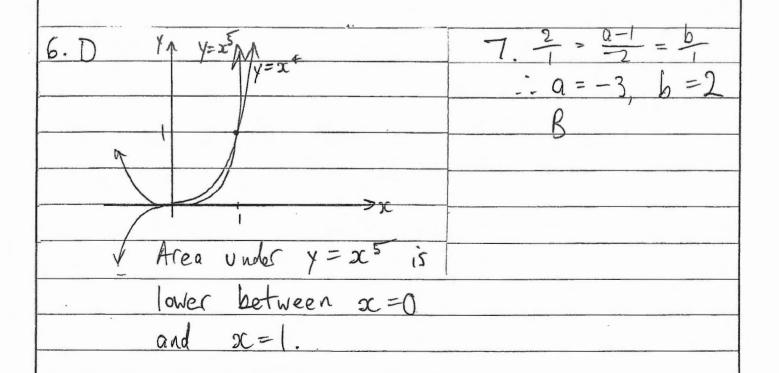
- (ii) A function f(x) has the property that f(x) + f(a x) = f(a) 2 Using part (i), or otherwise, show that $\int_a^a f(x) dx = \frac{a}{2} f(a)$
- c) (i) Given $f(t) = \sin(a+nt) \sin b \sin a \sin(b-nt)$ 2 where a,b and n are constants with a>0,b>0 and $a+b<\pi$ and $n\neq 0$, show that $f(t)=\sin(a+b) \sin nt$
 - (ii) Find all values of t for which $\frac{\sin (a+nt)}{\sin (b-nt)} = \frac{\sin a}{\sin b}$

Question 16 continues......

d) 2

Let n be a positive integer greater than 1. The area of the region under the curve $y=\frac{1}{x}$ from x=n-1 to x=n is between the areas of two rectangles, as shown in the

Show that $e^{\frac{-n}{n-1}} < (1 - \frac{1}{n})^n < e^{-1}$


diagram.

End of Exam

Student Name: ______ Teacher Name: _____

2021 Ext. 2	Trial HSC solutions
1. only one where	2. $V^2 = N^2(q^2 - x^2)$
dot product = 0	$3^{2} = N^{2}(2^{2} - 1^{2})$
is D.	$9 - 3n^2$
	2 = 2 . [2

$$n^2 = 3$$
 $n = \sqrt{3}$
 $T = 2\sqrt{3} = 2\sqrt{3}$

Student Name: _____ Teacher Name: _____

a Im	9 000 0 = 1) 1
8. 1	9. cos 0 = U.V
	Tulxlul
	= 1×1+1×2+0×
$\left(\begin{array}{c c} & \left(\begin{array}{c} 26 \\ \end{array}\right) \end{array}\right) > Re$	$\sqrt{1^2+1^2+0^2} \times \sqrt{1^2+2}$
A is true as exterior	= =====================================
	: 0 = 45°
angle equals twice interior	0 - 43
opp. angle in isosceles 1	
' A	
$10. \omega^7 - 1 = 0$	
$(\omega - 1)(\omega^{6} + \omega^{5} + \omega^{4} + \omega^{3} + \omega^{2} + \omega$	+1)=0
If w is complex then	2 d bracket = 0
$bu+w^7=1,$	2 NOT BY WE SELL OF
$\beta UT \qquad $.5 .6 .7
$-1 + \omega + \omega^{2} + \omega^{3} + \omega^{4} + \omega^{4}$	J + W + W
0 +	
-	
A	
•	

Teacher Name:

(i)
$$ZZ = (1+13i)(1-13i)0$$
 (ii) $Z^2 = (1+13i)$

$$=1^{2}+(\sqrt{3})^{2}$$

$$\Gamma = \sqrt{(-2)^2 + (2\sqrt{3})^2}$$

$$= \sqrt{4 + 12}$$

$$-2 + 2\sqrt{3}i = 4e^{2\pi i} = 4e^{i(2\pi)}(2\pi)$$

c) (i)
$$\int \frac{dsc}{sc(\ln sc)}$$

$$\frac{1}{(i)} \int_{-\infty}^{\infty} x^2 + 6x + 13 dx$$

$$\int (3c+3)^2+2^2 dx$$
 0

$$\frac{1}{2}dx = \frac{1}{2}$$

$$\frac{1}{2}dy = \frac{1}{2}$$

$$=\frac{1}{2}+an^{-1}\left(\frac{3c+3}{2}\right)+c$$

$$dci) e^{i\theta} = cos\theta + isin\theta \qquad (ii) e^{i\theta} - e^{-i\theta} = (cos\theta + isin\theta) - (c$$

$$e^{-i\theta} = \cos(-\theta) + i\sin(-\theta)$$

$$e^{-i\theta} = \cos \theta - i\sin \theta$$

$$5in0 = \frac{1}{2i}(e^{i\theta} - e^{-i\theta})$$

Student Name: _____ Teacher Name: _____

Student Name: Teacher Name:
ciii) $\sin \theta = \frac{1}{2i} (e^{i\theta} - e^{-i\theta})$
$\operatorname{Cin}^3 \Omega = 8i3 \left(e^{i\theta} - e^{-i\theta} \right)^3 \left(0 \right)$
$= \frac{1}{8i} \left(e^{3i\theta} - 3e^{2i\theta} e^{-i\theta} + 3e^{i\theta} e^{-2i\theta} - e^{-3i\theta} \right)$ $= \frac{1}{8i} \left(e^{3i\theta} - e^{-3i\theta} - 3(e^{i\theta} - e^{-i\theta}) \right) (2)$
$= 8i \left(e^{3i\theta} - e^{-3i\theta} - 3(e^{i\theta} - e^{-i\theta}) \right) = 0$
= 8i (2isin 30 - 3 x 2isin 0)
= 3 sin0 - 4 sin30) 3 as required.
$12axay^2 = 8-2x-x^2$ $ciii = 1/2 = 4-x^2$
Let $V = 0$ $\frac{1}{2}$
$0 = x^2 + 2x - 8$ (1) $q = -(x+1)$ (1)
0 = (x-2)(x+4)
$x = 2$ and -4 2 citis Period = $\frac{2\pi}{n}$
oscillates between there n=1 from above
-: Peciod is 2tt
civ) Travels 12m in one
period: 5 periods = 5 x 2T = 10T seconds ()
= 5 x IT = 10 T Seconds ()
1) (01)220 = 02, 62 > 2.6
b) $(a-b)^2 > 0 \implies a^2 + b^2 > 2ab$ $(b-c)^2 > 0 \implies b^2 + c^2 > 2bc$
$\frac{(b-c)^{2}}{(a-c)^{2}} \Rightarrow 0 \Rightarrow q^{2} + c^{2} \Rightarrow 2ac 0$
$\frac{2a^{2}+2b^{2}+2c^{2}}{2(ab+bc+ac)}$
$\frac{2a + 2b + 2c}{a^2 + b^2 + c^2} > ab + bc + ac = 2$
1 12 2 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1
1 1 0 1 1 1 1 0 1 0 1 0 0
$\frac{(a+b+c)^2-2ab-2bc-2ac>ab+bc+ac}{(a+b+c)^2>3ab+3bc+3ac}$

Student Name:	Teacher Name	:

1201	Let	the	unit	vector	be	V=91	+ 61	+ck
			V.V.			~	7	_

$$\begin{pmatrix} g \\ b \end{pmatrix} \cdot \begin{pmatrix} 3 \\ 2 \\ 2 \end{pmatrix} = 0 \quad \text{and} \quad \begin{pmatrix} a \\ b \end{pmatrix} \cdot \begin{pmatrix} -1 \\ -1 \end{pmatrix} = 0 \quad \text{gives}$$

$$5a = 0$$

 $a = 0$ $b = -c$
 $b = -c$

$$d(a) \vec{OP} = i + 2j - k - (i + 2j) \quad \vec{OR} = 2i - 3j - 2k - (i + 2j) - (i + 2j)$$

$$= -k^{2} - (i + 2j)$$

(i)
$$\overrightarrow{OP} \cdot \overrightarrow{QR} = |\overrightarrow{QP}|_{x} |\overrightarrow{QR}|_{cos\theta}$$

(ii)
$$QP \cdot QR = |QP| \times |QR| \cos \theta$$

$$2 = | \times \sqrt{1^2 + 5^2 + 2^2} \cos \theta$$

$$\cos \theta = \sqrt{30}$$

$$Q = 69^{\circ} G$$

e)(i)
$$r = \begin{pmatrix} 1 \\ 3 \\ -2 \end{pmatrix} + \lambda \begin{pmatrix} 2-1 \\ -1-3 \\ 2--2 \end{pmatrix}$$

$$= \begin{pmatrix} 1 \\ 3 \\ -2 \end{pmatrix} + \lambda \begin{pmatrix} -4 \\ 4 \end{pmatrix} \begin{pmatrix} 1 \\ 4 \end{pmatrix}$$

Teacher Name:

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 4 \\ -9 \\ 10 \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \\ -2 \end{pmatrix} + \begin{pmatrix} 1 \\ -4 \\ 4 \end{pmatrix}$$

$$\begin{array}{c|c}
13a) & dx \\
\hline
x \sqrt{x^2-4}
\end{array}$$

$$U = \sqrt{3c^2 - 4}$$

$$\frac{dv}{x} = \frac{dx}{\sqrt{x^2 - 4}}$$

$$\int \frac{dv}{x^2}$$

$$\int \frac{du}{u^2+4} \left(1\right)$$

Since
$$v^2 = x^2 - 4$$

$$= \frac{1}{2} \tan^{-1} \frac{\sqrt{x^2-4}}{2} + C$$
 (2)

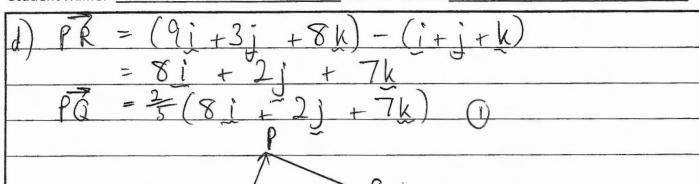
b)
$$\int \frac{a}{x^2 \sin x} dx$$

$$\int x^2 dx \left(-\cos x\right) dx$$

$$= -x^2 \cos x - \int 2x - \cos x \, dx$$

$$= -x^2 \cos x + 2x \sin x + 2\cos x + C$$

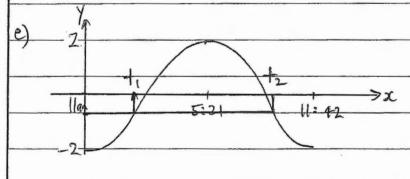
c)	Show	true	for	n=2


50

assumption

n = k + 1

n=3+1=4 and by induction for all positive integral values of n >2.


Teacher Name:

Now $\vec{OP} + \vec{PQ} = \vec{OQ}$ $\vec{OQ} = \vec{i} + \vec{j} + \vec{k} + \frac{2}{5}(8\vec{i} + 2\vec{j} + 7\vec{k})$ ②

00 = = = + = j + = K

:. 0 = 3 + 5 | + 5 | + 5 | or (3) (3) (3) (3) (3) (3)

ci Period = 12hrs 42min

= 762 mins. (

(ii) $y = -2\cos n + 0$ $t = 762 = 2\pi$

 $\frac{1}{1} = \frac{1}{381}$

 $y = -2\cos \frac{\pi t}{38}$ (2)

ciri) Im above low tide > y=-1 on our graph.

Student Name: _____ Teacher Name: _____

$-1 = -2 \cos \frac{\pi T}{381}$ (1)
$-1 = -2 \cos \frac{\pi +}{381}$ $\frac{1}{2} = \cos \frac{\pi +}{381}$ $\frac{1}{3} = \frac{1}{3} \cdot \frac{5 \times 381}{3}$ $+ = \frac{381}{3} \cdot \frac{5 \times 381}{3}$
· x+ = x 5x
- 381 3 3 381 5 x 381
$+=\frac{1}{3},\frac{1}{3}$
= 127, 635
= 2hrs 7min and 10hrs 35 min after
llam ie: safe between 1:07pm and 9:35pm
2
14.a) Assume the statement is false
H. L. f. C. STUTENENT IS THE
that for an irrational number s,
there exists a number 25+1 which is
l cational
ie: 25+1 = \$ 0 Where a and b are
integers with no common
f. 7. rs
$\frac{1}{2}s = \frac{a}{b} - \frac{1}{a}$
= 9 - 4
$2a = \frac{9-b}{1}$
2) a-b
S = 2b
- 5 = d where c and d are
: 5 = 5 where c and d are integers since a and b
are.
s is rational
CONTRADICTION (3)
Original statement is true.
of grand statement is the

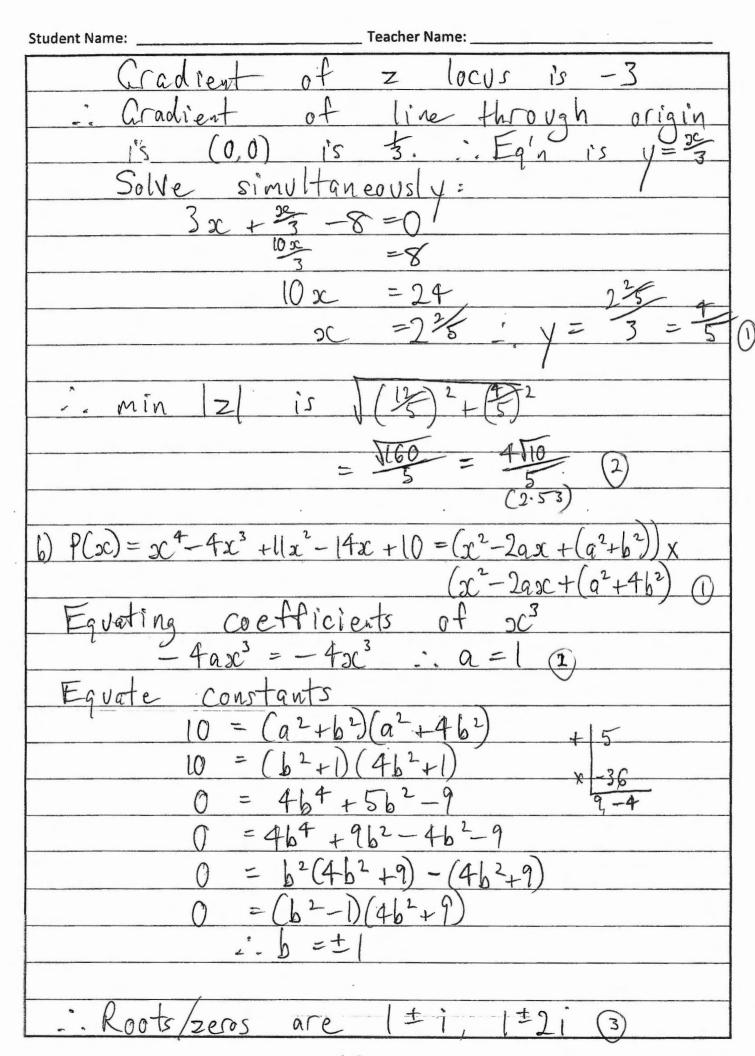
Teacher Name: _

$$= (\sqrt{12})^{n-2} - (n-2) \int_0^{\frac{\pi}{4}} (\sec^2 \theta - 1) \sec^{n-2} \theta \ d\theta$$

$$= (\sqrt{2})^{n-2} - (n-2) \int_{0}^{\pi} \sec^{n}\theta \, d\theta + (n-2) \int_{0}^{\pi} \sec^{n-2}\theta \, d\theta$$

$$I_n = (\sqrt{12})^{n-2} - (n-2)I_n + (n-2)I_{n-2}$$

$$I_n + (n-2)I_n = (\overline{12})^{n-2} + (n-2)I_{n-2}$$

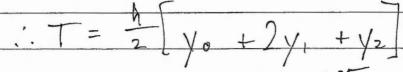

$$(n-1)I_n = (n-2)I_{n-2} + (\sqrt{2})^{n-2}$$

$$I_n = \frac{1}{n-1}[(n-2)I_{n-2} + (I_2)^{n-2}]$$
 3

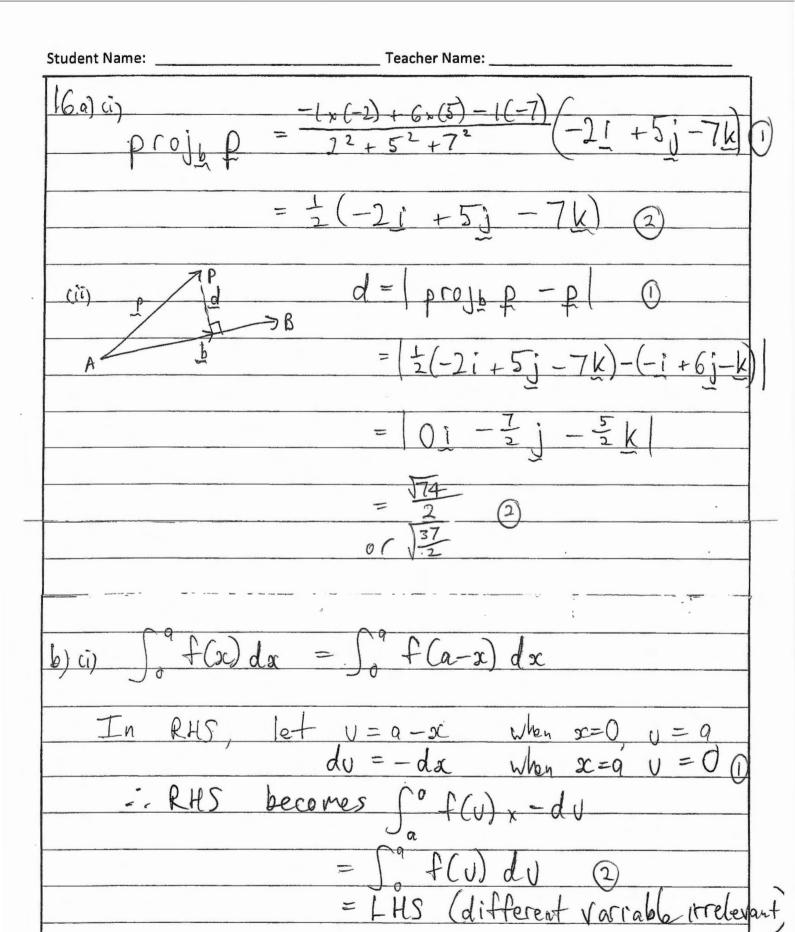
cii)
$$I_4 = \frac{2}{3}I_2 + \frac{1}{3}(I_2)^2$$
 (1)
= $\frac{2}{3}(0+1) + \frac{2}{3}$.
 $I_4 = \frac{4}{3}$ (2)

Student Name: ______ Teacher Name: _____

c) (i) $1 = ax(x-1) + b(x-1) + cx^2$	
Let x=1 -1 = c 0 for	y = 3 + 2 +
x=0: $1=-b$ one of those	2 = -4 + 2 + 0
let x=2:, 1=2a+b+4c	Sub. these into sphere
1=29-1+4	$(1++-1)^2+(3+2+-3)$
$So_{\alpha} = -1, b = -1, c = 1$	$+(-4+2++4)^2=81$
	$+^{2} + (2+)^{2} + (2+)^{2} = 81$
(ii) $\sqrt{3c} - 3c^2 + 3c - 1 dx$	9+2=81
=-10go x + x-1 +10ge x-1(0)	$+^2 = 9$
0	+ =±3 (2)
= loge 3c + 5c + C 2	sub_into (1) (3)
	gives (4,9,2) or
· .	(-2, -3, -10)
	(one of) (3)
	· · · · · · · · · · · · · · · · · · ·
15.d)c) 2-6 = 2+2i	
Let octiv=z	177-1
x-6 + y = x+ (y+2)	16>
$\sqrt{(x-6)^2 + y^2} = \sqrt{3c^2 + (y+2)^2}$	(1)
22-12x+36+42= x2+42+44+4	
0 = 12x + 4y - 32	
0 = 3x + y - 8	2
N	, , , , , , ,
^	1 distance of
this line from (0,0)	1, D
Need to find perpendicula	ar line to P
passing through origin.	


Teacher Name:

Student Name: Teacher Name:
Q(i) $\sqrt{=12x}e^{-x^2}$, $x \ge 0.1$ $\frac{dx}{dx} = 12x \times -2x \times e^{-x^2} + e^{-x^2} \times 12 \times \frac{1}{2}x^{-\frac{1}{2}}$ $= -212x^{\frac{1}{2}}e^{-x^2} + 12e^{-x^2}$ (i) $2\sqrt{x}e^{-x^2}$
$\frac{dx}{dx} = \sqrt{2}x \times -2x \times e^{-x^2} + e^{-x^2} \times \sqrt{2} \times \frac{1}{2}x^{-\frac{1}{2}}$
$=-212x^{2}e+12e$ (1)
$q = \sqrt{\frac{1}{2}} =$
$= -4 \chi^2 e^{-2x^2} + e^{-2x^2}$
$= e^{-2x^2(1-4x^2)} \text{ as reg'd}$
(ii) When $x=0-1$, $a=v dx>0$. Particle
increases speed until q=0 ie: when 1-4x2=0.
$4x^2=1$
$3c^2 = -\frac{1}{4}$ $2c = 0.5 (since x > 0.1) 0$
Sub. thus into V gives
$V = \sqrt{\frac{12 \times 0.5 \times e^{-0.5^2}}{15}}$ is max. speed. (2)
$V = e^{-0.25}$ is max. speed. 2
(iii) $\sqrt{\frac{1}{2}} = \sqrt{\frac{1}{12}} = \sqrt{\frac{1}{12}} = \sqrt{\frac{1}{12}} = \sqrt{\frac{1}{12}}$
$\left(\frac{2}{e^{\chi^2}}\right)_{\gamma}$
$\frac{1}{\sqrt{2}} = \int d + (1)$
$T = \int_{-\infty}^{\infty} \frac{e^{x} dx}{x^{2}}$
· VI Via


Ctudon	t Name:
Juuen	Livaine.

Teacher Name:

civo oc	l	1.5	2
f(sc)	e/2	e 2.25	e 4/2

$$= \frac{0.5}{2} \left[\frac{e}{12} + \frac{2e^{2.25}}{13} + \frac{e^{4}}{2} \right] 0$$

cii)
$$f(x) + f(a-x) = f(a)$$

 $\int_{0}^{a} f(x) dx + \int_{0}^{a} f(a-x) dx = \int_{0}^{a} f(a) dx$
 $2 \int_{0}^{a} f(x) dx = \int_{0}^{a} f(a) dx = \int_{0}^{a} f(a) dx$

Teacher Name:

$$2\int_{a}^{a} f(x) dx = a f(a)$$

$$-i \int_{0}^{a} f(x) dx = \frac{a}{2} f(a)$$
 2

sina (sinb cosnt - sinnt cosb) ()

= cosqsinbsinnt + sinacosbsinnt

= (cosasinb + sinacosb)sinnt

-. Sinbsin(a+nt) = sinasin(b-nt)

sinbsin(a+nt)-singsin(b-nt)=0

 $\Rightarrow \sin(a+b)\sin nt = 0$ using (i) 0 as $\sin(a+b) \neq 0$.

sinnt=03

n + = k + k + k = 0 + 1 + 2 + 3

3

Student Name: _____ Teacher Name: _____

d)	Area	of lower rectangle = h
	Area	of upper rectangle = n-T
	· 1	$2\int_{N-1}^{N} \frac{dx}{dx} = 2\int_{N-1}^{N} \frac{dx}{dx}$
	- In	$\angle \left[\left[n \times \right]_{n-1}^{n} \angle n - 1 \right]$
	L	$2 \ln \frac{n}{n-1}$
	eti	$\frac{1}{2}$ $\frac{1}$
	е	$(\frac{n}{n-1})^n \times e^{\frac{n}{n-1}}$
	e	$> \left(\frac{n-1}{n}\right)^n > e^{n-1}$
	en-1	$\frac{1}{2}\left(\frac{n-1}{n}\right)^{n}$ $\frac{1}{2}\left(\frac{n}{e}\right)^{n}$
	e n-1	$\angle (1-\frac{1}{n})^n \angle e^{-1}$ as regid.
-		(2)